On the mixing time of the flip walk on triangulations of the sphere

Thomas Budzinski

ENS Paris

Les probabilités de demain 11 Mai 2017

Definitions

- A planar map is a finite, connected graph embedded in the sphere in such a way that no two edges cross (except at a common endpoint), considered up to orientation-preserving homeomorphism.
- A planar map is a rooted type-I triangulation if all its faces have degree 3 and it has a distinguished oriented edge. It may contain multiple edges and loops.

Planar maps

Definitions

- A planar map is a finite, connected graph embedded in the sphere in such a way that no two edges cross (except at a common endpoint), considered up to orientation-preserving homeomorphism.
- A planar map is a rooted type-I triangulation if all its faces have degree 3 and it has a distinguished oriented edge. It may contain multiple edges and loops.

Random planar maps in a nutshell

Let \mathscr{T}_{n} be the set of rooted type-I triangulations of the sphere with n vertices, and $T_{n}(\infty)$ be a uniform variable on \mathscr{T}_{n}. Geometric properties of $T_{n}(\infty)$ for n large?

Random planar maps in a nutshell

Let \mathscr{T}_{n} be the set of rooted type-I triangulations of the sphere with n vertices, and $T_{n}(\infty)$ be a uniform variable on \mathscr{T}_{n}. Geometric properties of $T_{n}(\infty)$ for n large ?

- Exact enumeration results [Tutte],

Random planar maps in a nutshell

Let \mathscr{T}_{n} be the set of rooted type-I triangulations of the sphere with n vertices, and $T_{n}(\infty)$ be a uniform variable on \mathscr{T}_{n}. Geometric properties of $T_{n}(\infty)$ for n large ?

- Exact enumeration results [Tutte],
- the distances in $T_{n}(\infty)$ are of order $n^{1 / 4}$
[\approx Chassaing-Schaeffer],

Random planar maps in a nutshell

Let \mathscr{T}_{n} be the set of rooted type-I triangulations of the sphere with n vertices, and $T_{n}(\infty)$ be a uniform variable on \mathscr{T}_{n}. Geometric properties of $T_{n}(\infty)$ for n large?

- Exact enumeration results [Tutte],
- the distances in $T_{n}(\infty)$ are of order $n^{1 / 4}$ [\approx Chassaing-Schaeffer],
- when the distances are renormalized, $T_{n}(\infty)$ to a continuum random metric space called the Brownian map [Le Gall],

Random planar maps in a nutshell

Let \mathscr{T}_{n} be the set of rooted type-I triangulations of the sphere with n vertices, and $T_{n}(\infty)$ be a uniform variable on \mathscr{T}_{n}. Geometric properties of $T_{n}(\infty)$ for n large ?

- Exact enumeration results [Tutte],
- the distances in $T_{n}(\infty)$ are of order $n^{1 / 4}$ [\approx Chassaing-Schaeffer],
- when the distances are renormalized, $T_{n}(\infty)$ to a continuum random metric space called the Brownian map [Le Gall],
- the Brownian map is homeomorphic to the sphere [Le Gall-Paulin].

How to sample a large uniform triangulation?

- "Modern" tools : bijections with trees, peeling process.
- Back in the 80's : Monte Carlo methods : we look for a Markov chain on \mathscr{T}_{n} for which the uniform measure is stationary.
- A simple local operation on triangulations : flips.

How to sample a large uniform triangulation?

- "Modern" tools : bijections with trees, peeling process.
- Back in the 80's : Monte Carlo methods : we look for a Markov chain on \mathscr{T}_{n} for which the uniform measure is stationary.
- A simple local operation on triangulations : flips.

t

How to sample a large uniform triangulation?

- "Modern" tools : bijections with trees, peeling process.
- Back in the 80's : Monte Carlo methods : we look for a Markov chain on \mathscr{T}_{n} for which the uniform measure is stationary.
- A simple local operation on triangulations : flips.

How to sample a large uniform triangulation?

- "Modern" tools : bijections with trees, peeling process.
- Back in the 80's : Monte Carlo methods : we look for a Markov chain on \mathscr{T}_{n} for which the uniform measure is stationary.
- A simple local operation on triangulations : flips.

How to sample a large uniform triangulation?

- "Modern" tools : bijections with trees, peeling process.
- Back in the 80's : Monte Carlo methods : we look for a Markov chain on \mathscr{T}_{n} for which the uniform measure is stationary.
- A simple local operation on triangulations : flips.

$$
\mathfrak{f l i p}\left(t, e_{1}\right)
$$

How to sample a large uniform triangulation?

- "Modern" tools : bijections with trees, peeling process.
- Back in the 80's : Monte Carlo methods : we look for a Markov chain on \mathscr{T}_{n} for which the uniform measure is stationary.
- A simple local operation on triangulations : flips.

t

How to sample a large uniform triangulation?

- "Modern" tools : bijections with trees, peeling process.
- Back in the 80's : Monte Carlo methods : we look for a Markov chain on \mathscr{T}_{n} for which the uniform measure is stationary.
- A simple local operation on triangulations : flips.

How to sample a large uniform triangulation?

- "Modern" tools : bijections with trees, peeling process.
- Back in the 80's : Monte Carlo methods : we look for a Markov chain on \mathscr{T}_{n} for which the uniform measure is stationary.
- A simple local operation on triangulations : flips.

$\mathfrak{f l i p}\left(t, e_{2}\right)=t$

How to sample a large uniform triangulation?

- "Modern" tools : bijections with trees, peeling process.
- Back in the 80's : Monte Carlo methods : we look for a Markov chain on \mathscr{T}_{n} for which the uniform measure is stationary.
- A simple local operation on triangulations : flips.

How to sample a large uniform triangulation?

- "Modern" tools : bijections with trees, peeling process.
- Back in the 80's : Monte Carlo methods : we look for a Markov chain on \mathscr{T}_{n} for which the uniform measure is stationary.
- A simple local operation on triangulations : flips.

How to sample a large uniform triangulation?

- "Modern" tools : bijections with trees, peeling process.
- Back in the 80's : Monte Carlo methods : we look for a Markov chain on \mathscr{T}_{n} for which the uniform measure is stationary.
- A simple local operation on triangulations : flips.

A Markov chain on \mathscr{T}_{n}

- We fix $t_{0} \in \mathscr{T}_{n}$ and take $T_{n}(0)=t_{0}$.
- Conditionally on $\left(T_{n}(k)\right)_{0 \leq i \leq k}$, let e_{k} be a uniform edge of $T_{n}(k)$ and $T_{n}(k+1)=f \mathfrak{f l i p}\left(T_{n}(k), e_{k}\right)$.

A Markov chain on \mathscr{T}_{n}

- We fix $t_{0} \in \mathscr{T}_{n}$ and take $T_{n}(0)=t_{0}$.
- Conditionally on $\left(T_{n}(k)\right)_{0 \leq i \leq k}$, let e_{k} be a uniform edge of $T_{n}(k)$ and $T_{n}(k+1)=f \mathfrak{f l i p}\left(T_{n}(k), e_{k}\right)$.
- The uniform measure on \mathscr{T}_{n} is reversible for T_{n}, thus stationary.

A Markov chain on \mathscr{T}_{n}

- We fix $t_{0} \in \mathscr{T}_{n}$ and take $T_{n}(0)=t_{0}$.
- Conditionally on $\left(T_{n}(k)\right)_{0 \leq i \leq k}$, let e_{k} be a uniform edge of $T_{n}(k)$ and $T_{n}(k+1)=\mathfrak{f l i p}\left(T_{n}(k), e_{k}\right)$.
- The uniform measure on \mathscr{T}_{n} is reversible for T_{n}, thus stationary.
- The chain T_{n} is irreducible (the flip graph is connected [Wagner 36]) and aperiodic (non flippable edges), so it converges to the uniform measure.

A Markov chain on \mathscr{T}_{n}

- We fix $t_{0} \in \mathscr{T}_{n}$ and take $T_{n}(0)=t_{0}$.
- Conditionally on $\left(T_{n}(k)\right)_{0 \leq i \leq k}$, let e_{k} be a uniform edge of $T_{n}(k)$ and $T_{n}(k+1)=\mathfrak{f l i p}\left(T_{n}(k), e_{k}\right)$.
- The uniform measure on \mathscr{T}_{n} is reversible for T_{n}, thus stationary.
- The chain T_{n} is irreducible (the flip graph is connected [Wagner 36]) and aperiodic (non flippable edges), so it converges to the uniform measure.
- Question : how quick is the convergence?

Mixing time of T_{n}

- For $n \geq 3$ and $0<\varepsilon<1$ we define the mixing time $t_{\text {mix }}(\varepsilon, n)$ as the smallest k such that

$$
\max _{t_{0} \in \mathscr{T}_{n}} \max _{A \subset \mathscr{T}_{n}}\left|\mathbb{P}\left(T_{n}(k) \in A\right)-\mathbb{P}\left(T_{n}(\infty) \in A\right)\right| \leq \varepsilon
$$

where we recall that $T_{n}(\infty)$ is uniform on \mathscr{T}_{n}.

Mixing time of T_{n}

- For $n \geq 3$ and $0<\varepsilon<1$ we define the mixing time $t_{\text {mix }}(\varepsilon, n)$ as the smallest k such that

$$
\max _{t_{0} \in \mathscr{T}_{n}} \max _{A \subset \mathscr{T}_{n}}\left|\mathbb{P}\left(T_{n}(k) \in A\right)-\mathbb{P}\left(T_{n}(\infty) \in A\right)\right| \leq \varepsilon
$$

where we recall that $T_{n}(\infty)$ is uniform on \mathscr{T}_{n}.

Theorem (B., 2016)

For all $0<\varepsilon<1$, there is a constant $c>0$ such that

$$
t_{m i x}(\varepsilon, n) \geq c n^{5 / 4} .
$$

Sketch of proof

We will be interested in the existence of small separating cycles.

Sketch of proof

We will be interested in the existence of small separating cycles.

Theorem (\approx Le Gall-Paulin, 2008)

Let $\ell_{n}=o\left(n^{1 / 4}\right)$. Then, with probability going to 1 as $n \rightarrow+\infty$, there is no cycle in $T_{n}(\infty)$ of length at most ℓ_{n} that separates $T_{n}(\infty)$ in two parts, each of which contains at least $\frac{n}{4}$ vertices.

Sketch of proof

We will be interested in the existence of small separating cycles.

Theorem (\approx Le Gall-Paulin, 2008)

Let $\ell_{n}=o\left(n^{1 / 4}\right)$. Then, with probability going to 1 as $n \rightarrow+\infty$, there is no cycle in $T_{n}(\infty)$ of length at most ℓ_{n} that separates $T_{n}(\infty)$ in two parts, each of which contains at least $\frac{n}{4}$ vertices.

Let $T_{n}^{1}(0)$ and $T_{n}^{2}(0)$ be two independent uniform triangulations of a 1-gon with $\frac{n}{2}$ inner vertices each, and $T_{n}(0)$ the gluing of $T_{n}^{1}(0)$ and $T_{n}^{2}(0)$ along their boundary.

Sketch of proof

We will be interested in the existence of small separating cycles.

Theorem (\approx Le Gall-Paulin, 2008)

Let $\ell_{n}=o\left(n^{1 / 4}\right)$. Then, with probability going to 1 as $n \rightarrow+\infty$, there is no cycle in $T_{n}(\infty)$ of length at most ℓ_{n} that separates $T_{n}(\infty)$ in two parts, each of which contains at least $\frac{n}{4}$ vertices.

Let $T_{n}^{1}(0)$ and $T_{n}^{2}(0)$ be two independent uniform triangulations of a 1-gon with $\frac{n}{2}$ inner vertices each, and $T_{n}(0)$ the gluing of $T_{n}^{1}(0)$ and $T_{n}^{2}(0)$ along their boundary. It is enough to prove

Proposition

Let $k_{n}=o\left(n^{5 / 4}\right)$. There is a cycle γ in $T_{n}\left(k_{n}\right)$ of length $o\left(n^{1 / 4}\right)$ in probability that separates $T_{n}\left(k_{n}\right)$ in two parts, each of which contains at least $\frac{n}{4}$ vertices.

Exploration of $T_{n}(k)$

Perimeter :
 $$
\widetilde{P}_{n}(0)=1
$$

Explored volume :
$\widetilde{V}_{n}(0)=1$
exploration steps :

Exploration of $T_{n}(k)$

$$
\begin{aligned}
& \text { Perimeter : } \\
& \widetilde{P}_{n}(0)=1
\end{aligned}
$$

Explored volume :
$\widetilde{V}_{n}(0)=1$
exploration steps :

Exploration of $T_{n}(k)$

Perimeter :
 $$
\widetilde{P}_{n}(1)=1
$$

Explored volume :

$$
\widetilde{V}_{n}(1)=1
$$

exploration steps :

Exploration of $T_{n}(k)$

Perimeter :
$\widetilde{P}_{n}(1)=1$
Explored volume :
$\widetilde{V}_{n}(1)=1$
exploration steps :

Exploration of $T_{n}(k)$

Perimeter:

$$
\widetilde{P}_{n}(1)=1
$$

Explored volume :
$\widetilde{V}_{n}(1)=1$
exploration steps :
1

Exploration of $T_{n}(k)$

Perimeter :

$$
\widetilde{P}_{n}(2)=2
$$

Explored volume :
$\widetilde{V}_{n}(2)=2$
exploration steps :
1

Exploration of $T_{n}(k)$

Perimeter :

$$
\widetilde{P}_{n}(2)=2
$$

Explored volume :
$\widetilde{V}_{n}(2)=2$
exploration steps :
1

Exploration of $T_{n}(k)$

Perimeter :

$$
\widetilde{P}_{n}(3)=2
$$

Explored volume :
$\widetilde{V}_{n}(3)=2$
exploration steps :
1

Exploration of $T_{n}(k)$

Perimeter:

$$
\widetilde{P}_{n}(3)=2
$$

Explored volume :
$\widetilde{V}_{n}(3)=2$
exploration steps :
1

Exploration of $T_{n}(k)$

Perimeter :

$$
\widetilde{P}_{n}(3)=2
$$

Explored volume :
$\widetilde{V}_{n}(3)=2$
exploration steps :
1
3

Exploration of $T_{n}(k)$

Perimeter :
$\widetilde{P}_{n}(4)=3$
Explored volume :
$\widetilde{V}_{n}(4)=3$
exploration steps :
1
3

Exploration of $T_{n}(k)$

Perimeter :

$$
\widetilde{P}_{n}(4)=3
$$

Explored volume :
$\widetilde{V}_{n}(4)=3$
exploration steps :
1
3

Exploration of $T_{n}(k)$

Perimeter :
 $$
\widetilde{P}_{n}(5)=3
$$

Explored volume :
$\widetilde{V}_{n}(5)=3$
exploration steps :
1
3

Exploration of $T_{n}(k)$

Perimeter :
 $$
\widetilde{P}_{n}(5)=3
$$

Explored volume :
$\widetilde{V}_{n}(5)=3$
exploration steps :
1
3

Exploration of $T_{n}(k)$

Perimeter :
$\widetilde{P}_{n}(5)=3$
Explored volume :
$\widetilde{V}_{n}(5)=3$
exploration steps :
1
3
5

Exploration of $T_{n}(k)$

Perimeter :
$\widetilde{P}_{n}(6)=4$
Explored volume :
$\widetilde{V}_{n}(6)=4$
exploration steps :
1
3
5

Exploration of $T_{n}(k)$

Perimeter :
$\widetilde{P}_{n}(6)=4$
Explored volume :
$\widetilde{V}_{n}(6)=4$
exploration steps :
1
3
5

Exploration of $T_{n}(k)$

Perimeter :
$\widetilde{P}_{n}(7)=4$
Explored volume :
$\widetilde{V}_{n}(7)=4$
exploration steps :
1
3
5

Exploration of $T_{n}(k)$

Perimeter :
$\widetilde{P}_{n}(7)=4$
Explored volume :
$\widetilde{V}_{n}(7)=4$
exploration steps :
1
3
5

Exploration of $T_{n}(k)$

Perimeter :
$\widetilde{P}_{n}(7)=4$
Explored volume :
$\widetilde{V}_{n}(7)=4$
exploration steps :
1
3
5
7

Exploration of $T_{n}(k)$

Perimeter :
 $$
\widetilde{P}_{n}(8)=5
$$

Explored volume :
$\widetilde{V}_{n}(8)=5$
exploration steps :
1
3
5
7

Exploration of $T_{n}(k)$

Perimeter :
$\widetilde{P}_{n}(8)=5$
Explored volume :
$\widetilde{V}_{n}(8)=5$
exploration steps :

Exploration of $T_{n}(k)$

Perimeter :
$\widetilde{P}_{n}(8)=5$
Explored volume :
$\widetilde{V}_{n}(8)=5$
exploration steps :

Exploration of $T_{n}(k)$

Perimeter :
$\widetilde{P}_{n}(8)=5$
Explored volume :
$\widetilde{V}_{n}(8)=5$
exploration steps :

Exploration of $T_{n}(k)$

Perimeter :

$$
\widetilde{P}_{n}(9)=4
$$

Explored volume :
$\widetilde{V}_{n}(9)=6$
exploration steps :
1
3
5
7
8

Exploration of $T_{n}(k)$

Perimeter :

$$
\widetilde{P}_{n}(9)=4
$$

Explored volume :
$\widetilde{V}_{n}(9)=6$
exploration steps :
1
3
5
7
8

Exploration of $T_{n}(k)$

Perimeter:
$\widetilde{P}_{n}(10)=4$
Explored volume :

$$
\widetilde{V}_{n}(10)=6
$$

exploration steps :

Exploration of $T_{n}(k)$

Perimeter:
$\widetilde{P}_{n}(11)=4$
Explored volume :
$\widetilde{V}_{n}(11)=6$
exploration steps :

3
5
7
8

Exploration of $T_{n}(k)$

Perimeter:
$\widetilde{P}_{n}(11)=4$
Explored volume :
$\widetilde{V}_{n}(11)=6$
exploration steps :
1
3
5
7
8

Exploration of $T_{n}(k)$

Perimeter :
$\widetilde{P}_{n}(11)=4$
Explored volume :
$\widetilde{V}_{n}(11)=6$
exploration steps :

3
5
7
11

Exploration of $T_{n}(k)$

Perimeter:
$\widetilde{P}_{n}(12)=5$
Explored volume :
$\widetilde{V}_{n}(12)=7$
exploration steps :

3
5
7
11

Exploration of $T_{n}(k)$

Perimeter:
$\widetilde{P}_{n}(12)=5$
Explored volume :
$\widetilde{V}_{n}(12)=7$
exploration steps :

3
5
7
11

Exploration of $T_{n}(k)$

Perimeter:
$\widetilde{P}_{n}(12)=5$
Explored volume :
$\widetilde{V}_{n}(12)=7$
exploration steps :
1
3
5
7
8
11
12

Exploration of $T_{n}(k)$

Perimeter:
$\widetilde{P}_{n}(12)=5$
Explored volume :
$\widetilde{V}_{n}(12)=7$
exploration steps :
1
3
5
7
8
11
12

Exploration of $T_{n}(k)$

Perimeter :
$\widetilde{P}_{n}(13)=3$
Explored volume :
$\widetilde{V}_{n}(13)=7$
exploration steps :
1
3
5
7
8
11
12

Peeling estimates

Let $P_{n}(j)$ and $V_{n}(j)$ be the perimeter and the explored volume after j exploration steps.

- $\left(P_{n}, V_{n}\right)$ has the same distribution as for a fixed, uniform triangulation.

Peeling estimates

Let $P_{n}(j)$ and $V_{n}(j)$ be the perimeter and the explored volume after j exploration steps.

- $\left(P_{n}, V_{n}\right)$ has the same distribution as for a fixed, uniform triangulation.
- $P_{n}(j) \approx j^{2 / 3}$ and $V_{n}(j) \approx j^{4 / 3}$ as long as $j \ll n^{3 / 4}$ [Curien-Le Gall].

Peeling estimates

Let $P_{n}(j)$ and $V_{n}(j)$ be the perimeter and the explored volume after j exploration steps.

- $\left(P_{n}, V_{n}\right)$ has the same distribution as for a fixed, uniform triangulation.
- $P_{n}(j) \approx j^{2 / 3}$ and $V_{n}(j) \approx j^{4 / 3}$ as long as $j \ll n^{3 / 4}$ [Curien-Le Gall].
- So after $o\left(n^{3 / 4}\right)$ exploration steps, the perimeter is $o(\sqrt{n})$ and the explored volume is $o(n)$.

Peeling estimates

Let $P_{n}(j)$ and $V_{n}(j)$ be the perimeter and the explored volume after j exploration steps.

- $\left(P_{n}, V_{n}\right)$ has the same distribution as for a fixed, uniform triangulation.
- $P_{n}(j) \approx j^{2 / 3}$ and $V_{n}(j) \approx j^{4 / 3}$ as long as $j \ll n^{3 / 4}$ [Curien-Le Gall].
- So after $O\left(n^{3 / 4}\right)$ exploration steps, the perimeter is $o(\sqrt{n})$ and the explored volume is $o(n)$.
- Time-change : the number of flips between exploration steps j and $j+1$ is geometric, with parameter $\frac{P_{n}(j)}{3 n-6} \approx \sqrt{n}$ for $j \approx n^{3 / 4}$.

Peeling estimates

Let $P_{n}(j)$ and $V_{n}(j)$ be the perimeter and the explored volume after j exploration steps.

- $\left(P_{n}, V_{n}\right)$ has the same distribution as for a fixed, uniform triangulation.
- $P_{n}(j) \approx j^{2 / 3}$ and $V_{n}(j) \approx j^{4 / 3}$ as long as $j \ll n^{3 / 4}$ [Curien-Le Gall].
- So after $o\left(n^{3 / 4}\right)$ exploration steps, the perimeter is $o(\sqrt{n})$ and the explored volume is $o(n)$.
- Time-change : the number of flips between exploration steps j and $j+1$ is geometric, with parameter $\frac{P_{n}(j)}{3 n-6} \approx \sqrt{n}$ for $j \approx n^{3 / 4}$.
- So we need $\approx n^{5 / 4}$ flips to perform $\approx n^{3 / 4}$ exploration steps.

Peeling estimates

Let $P_{n}(j)$ and $V_{n}(j)$ be the perimeter and the explored volume after j exploration steps.

- $\left(P_{n}, V_{n}\right)$ has the same distribution as for a fixed, uniform triangulation.
- $P_{n}(j) \approx j^{2 / 3}$ and $V_{n}(j) \approx j^{4 / 3}$ as long as $j \ll n^{3 / 4}$ [Curien-Le Gall].
- So after $o\left(n^{3 / 4}\right)$ exploration steps, the perimeter is $o(\sqrt{n})$ and the explored volume is $o(n)$.
- Time-change : the number of flips between exploration steps j and $j+1$ is geometric, with parameter $\frac{P_{n}(j)}{3 n-6} \approx \sqrt{n}$ for $j \approx n^{3 / 4}$.
- So we need $\approx n^{5 / 4}$ flips to perform $\approx n^{3 / 4}$ exploration steps.
- In a uniform triangulation with perimeter p, we can find a cycle close to the boundary of length $\approx \sqrt{p}$ [Krikun].

Peeling estimates

Let $P_{n}(j)$ and $V_{n}(j)$ be the perimeter and the explored volume after j exploration steps.

- $\left(P_{n}, V_{n}\right)$ has the same distribution as for a fixed, uniform triangulation.
- $P_{n}(j) \approx j^{2 / 3}$ and $V_{n}(j) \approx j^{4 / 3}$ as long as $j \ll n^{3 / 4}$ [Curien-Le Gall].
- So after $o\left(n^{3 / 4}\right)$ exploration steps, the perimeter is $o(\sqrt{n})$ and the explored volume is $o(n)$.
- Time-change : the number of flips between exploration steps j and $j+1$ is geometric, with parameter $\frac{P_{n}(j)}{3 n-6} \approx \sqrt{n}$ for $j \approx n^{3 / 4}$.
- So we need $\approx n^{5 / 4}$ flips to perform $\approx n^{3 / 4}$ exploration steps.
- In a uniform triangulation with perimeter p, we can find a cycle close to the boundary of length $\approx \sqrt{p}$ [Krikun].
- After $o\left(n^{5 / 4}\right)$ flips, the perimeter is $o(\sqrt{n})$, so there is a separating cycle of length $o\left(n^{1 / 4}\right)$.

Is the lower bound sharp?

- Back-of-the-enveloppe computation :
- in a typical triangulation, the distance between two typical vertices x and y is $\approx n^{1 / 4}$.
- The probability that a flip hits a geodesic is $\approx n^{-3 / 4}$.
- The distance between x and y changes $\approx k n^{-3 / 4}$ times before time k.
- If $d(x, y)$ evolves roughly like a random walk, it varies of $\approx \sqrt{k n^{-3 / 4}}=n^{1 / 4}$ for $k=n^{5 / 4}$.

Is the lower bound sharp?

- Back-of-the-enveloppe computation :
- in a typical triangulation, the distance between two typical vertices x and y is $\approx n^{1 / 4}$.
- The probability that a flip hits a geodesic is $\approx n^{-3 / 4}$.
- The distance between x and y changes $\approx k n^{-3 / 4}$ times before time k.
- If $d(x, y)$ evolves roughly like a random walk, it varies of $\approx \sqrt{k n^{-3 / 4}}=n^{1 / 4}$ for $k=n^{5 / 4}$.
- For triangulations of a convex polygon (no inner vertices), the lower bound $n^{3 / 2}$ is believed to be sharp but the best known upper bound is n^{5} [McShine-Tetali].
- Prove that the mixing time is polynomial ?

MERCI!

