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Introduction



Definition
e fBm with Hurst exponent He (0, 1), is a centered Gaussian process (X¢):>0

such that:
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Application of fBm

e fBm is not used to model prices because it provides an arbitrage.

e fBm can be used to drive the dynamics of the log variance (Cf. Gatheral)
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Simulation of fBm

One of the technical difficulties of fbm is simulation.
e Cholesky decomposition. (N® decomposition)

e Approximate circulant method.

e Series expansion. (Karhunen-Loeve decomposition)



Series expansion for
continuous stochastic
processes



Let X be a closed set in R", u a strictly positive Borel measure on X, K a
continuous function on X x X. Define the operator Tk such that:

Tx : L*(X) — L*(X
Vg € L*(X),Vz € X, Tk(g /Kwy du(y).

We will assume that K satisfies:

e for all square integrable functions g, we have

(Tk(9),9) = 0.

/}:{K($,$)dp($) < 400



Mercer’'s theorem

Theorem:

There is an orthonormal set (v;) of L?(X) consisting of eigenfunctions of
T'x such that corresponding sequence of eigenvalues (J;) is nonnegative. The
eigenfunctions corresponding to non-zero eigenvalues are continuous on X and

K has the representation:

The series converges absolutely for (x,y) € X x X and uniformly on each
compact subset of X.

e Application to the Kernel Trick.



Karhunen-Loeve theorem

Theorem:

Let (X;) be a centered Gaussian process over |0,1], with continuous covari-
ance function, then X admits the following representation:

Vie [0,1], X;= ZZk%bk(t)a
k=1

where (¢r,)x>1 is an orthonormal basis of L?([0, 1]), and (Zx)x>1 are independent
centered (sanssian random variables.

e A general version of this theorem exists.



Sketch of the proof

The K-L decomposition is based on Mercer’s theorem:

Vst € (0,1, K(s,t) = 3 Aen(shn (o)
k=1
o \. > 0.

It comes out that X admits the following representation:

Vte |0,1], X;= Z \/EZHD& ().
k=1



Constructing the fractional
Brownian motion



Constructing fBm

e The extension of the auto-covariance function into a 2T- periodic function

gives:
oo

vte[-1,1], [t*" =) ck(coskmt —1),
k=1

1
where cp = / t2H cos kntdt
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Constructing fBm

e We get a decomposition of the covariance function:

K(t,s) = (52H + 25 |5 — t\ZH)
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Fourier spectrum of the fractional
Kernel

H <0.5 H > 0.5



Constructing fBm

e The extended covariance function is not necessarily a covariance function.

1
Vk>1, —cp=— t”f cos kmtdt = 2H / t2H =1 gin krtdt.
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The series expansion

e X admits the following series expansion for H < %:

Vie 0,1], X;= Z \/ _Tck (Zr (1 — coskmt) + Z_g sinkmt)) .
k=1

e This series converges uniformly, almost surely, and is rate-optimal:

E sup |X:—X{'| ~ AN ¥/log(N), A> 0.



Simulation of fBm
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Previous expansions

In [1], Dzhaparidze and van Zanten discovered the following series expansion for fBm

= gingf =) — Sk,
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where (X,,),>1 and (Y},),>1 arei.i.d centered Gaussian random variables, (z,,),,>1 the positive roots
of the Bessel function J_p, and (y,,),>1 the positive roots of the Bessel function Jy_g. The variance
of the Gaussian variables is given by: VarX,, = QCQHLE;EHJI-_EH(.I‘“)., Vary, = QG?LIy;zHJ:fI (Y ),
where ¢2, = 771T'(1 4+ 2H) sin 7H. In their paper, they prove that this expansion is rate-optimal in
the following sense:

In [2], Igloi gives another rate-optimal series expansion for fBm in the case H>1/2 which is
similar to our representation in that it is based on the same frequencies. This expansion is of the

form g
By =agtXo + Y _ai (ain{kwt}f‘{k T cus(krri))}{_k) , tel0,1]
k=1
where

- I'(2—2H)
i 77 O s T

o

/ (2 —2H) . : :
Vk € N*, aj = , oOR(i exp=i=H y(2H — 1, ikn))(kn)~H -2,

and (X} )rez are i.i.d standard Gaussian random variables.



Conclusion



Conclusion

The case H > 0.5 can be handled by a slight modification of the covariance
function.

Generalization of the decomposition to a large class of Gaussian processes
with stationarity.

Series expansions are interesting to simulate non Markovian Gaussian pro-
cesses, and control precisely the approximation error.

Potentially useful for parameter estimation. (Hurst index, drift, ...)



Thank you for your
attention!
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