Phase transitions in low-rank matrix estimation

May 11, 2017

Marc Lelarge \& Léo Miolane

INRIA, ENS

Introduction

The statistical model

"Spiked Wigner" model

- X: vector of dimension n with entries $X_{i} \stackrel{\text { i.i.d. }}{\sim} P_{0} . \mathbb{E} X_{1}=0, \mathbb{E} X_{1}^{2}=1$.
- $Z_{i, j}=Z_{j, i} \stackrel{\text { iid. }}{\sim} \mathcal{N}(0,1)$.
- λ : signal-to-noise ratio.

Goal: recover the low-rank matrix $\mathbf{X X}^{\top}$ from \mathbf{Y}.

Principal component analysis (PCA)

B.B.P. phase transition

- The matrix $\mathbf{Y} / \sqrt{n}=\sqrt{\lambda} \mathbf{X} \mathbf{X}^{\top} / n+\mathbf{Z} / \sqrt{n}$ is a perturbed low-rank matrix.
- Estimate \mathbf{X} using the eigenvector $\hat{\mathbf{x}}_{n}$ associated with the largest eigenvalue μ_{n} of \mathbf{Y} / \sqrt{n}.

Principal component analysis (PCA)

B.B.P. phase transition

- The matrix $\mathbf{Y} / \sqrt{n}=\sqrt{\lambda} \mathbf{X} \mathbf{X}^{\mathbf{T}} / n+\mathbf{Z} / \sqrt{n}$ is a perturbed low-rank matrix.
- Estimate \mathbf{X} using the eigenvector $\hat{\mathbf{x}}_{n}$ associated with the largest eigenvalue μ_{n} of \mathbf{Y} / \sqrt{n}.

Spectral density of the signal

Principal component analysis (PCA)

B.B.P. phase transition

- The matrix $\mathbf{Y} / \sqrt{n}=\sqrt{\lambda} \mathbf{X} \mathbf{X}^{\top} / n+\mathbf{Z} / \sqrt{n}$ is a perturbed low-rank matrix.
- Estimate \mathbf{X} using the eigenvector $\hat{\mathbf{x}}_{n}$ associated with the largest eigenvalue μ_{n} of \mathbf{Y} / \sqrt{n}.
B.B.P. phase transition

$$
\begin{aligned}
& \text { - if } \lambda \leq 1 \begin{cases}\mu_{n} & \longrightarrow 2 \\
\mathbf{X} \cdot \hat{\mathbf{x}}_{n} & \longrightarrow 0\end{cases} \\
& - \text { if } \lambda>1 \begin{cases}\mu_{n} & \longrightarrow \sqrt{\lambda}+\frac{1}{\sqrt{\lambda}}>2 \\
\left|\mathbf{X} \cdot \hat{\mathbf{x}}_{n}\right| & \longrightarrow \sqrt{1-1 / \lambda}>0\end{cases}
\end{aligned}
$$

Baik et al., 2005; Benaych-Georges and Nadakuditi, 2011

Questions

- PCA fails when $\lambda \leq 1$, but is it still possible to recover the signal?

Questions

- PCA fails when $\lambda \leq 1$, but is it still possible to recover the signal?
- When $\lambda>1$, is PCA optimal?

Questions

- PCA fails when $\lambda \leq 1$, but is it still possible to recover the signal?
- When $\lambda>1$, is PCA optimal?
- More generally, what is the best achievable estimation performance in both regimes?

MMSE and information-theoretic threshold Goal

$$
\begin{aligned}
\mathrm{MMSE}_{n} & =\min _{\hat{\theta}} \frac{1}{n^{2}} \mathbb{E}\left\|\mathbf{X X}^{\top}-\hat{\theta}(\mathbf{Y})\right\|^{2} \\
& =\frac{1}{n^{2}} \sum_{1 \leq i, j \leq n}\left(X_{i} X_{j}-\mathbb{E}\left[X_{i} X_{j} \mid \mathbf{Y}\right]\right)^{2} \leq \underbrace{\mathbb{E}\left[X^{2}\right]^{2}}_{\text {Dummy MSE }}
\end{aligned}
$$

MMSE and information-theoretic threshold Goal

$$
\begin{aligned}
\mathrm{MMSE}_{n} & =\min _{\hat{\theta}} \frac{1}{n^{2}} \mathbb{E}\left\|\mathbf{X X}^{\top}-\hat{\theta}(\mathbf{Y})\right\|^{2} \\
& =\frac{1}{n^{2}} \sum_{1 \leq i, j \leq n}\left(X_{i} X_{j}-\mathbb{E}\left[X_{i} X_{j} \mid \mathbf{Y}\right]\right)^{2} \leq \underbrace{\mathbb{E}\left[X^{2}\right]^{2}}_{\text {Dummy MSE }}
\end{aligned}
$$

Information-theoretic threshold

1. Compute $\lim _{n \rightarrow \infty} \mathrm{MMSE}_{n}$
2. Deduce the information-theoretic threshold, i.e. the critical value λ_{c} such that

- if $\lambda>\lambda_{c}, \quad \lim _{n \rightarrow \infty} \mathrm{MMSE}_{n}<$ Dummy MSE
- if $\lambda<\lambda_{c}, \quad \lim _{n \rightarrow \infty}^{n \rightarrow \infty} \mathrm{MMSE}_{n}=$ Dummy MSE

Connection with statistical physics

A planted spin glass model

- Compute the MMSE for $\mathbf{Y}=\sqrt{\frac{\lambda}{n}} \mathbf{X X}^{\top}+\mathbf{Z}$

Connection with statistical physics

A planted spin glass model

- Compute the MMSE for $\mathbf{Y}=\sqrt{\frac{\lambda}{n}} \mathbf{X X} \mathbf{X}^{\boldsymbol{\top}}+\mathbf{Z}$
- Study the posterior $\mathbb{P}(\mathbf{x} \mid \mathbf{Y})=\frac{1}{Z_{n}} P_{0}(\mathbf{x}) \exp \left(H_{n}(\mathbf{x})\right)$ where

$$
\begin{aligned}
& H_{n}(\mathbf{x})=\sum_{i<j} \sqrt{\frac{\lambda}{n}} Y_{i, j} x_{i} x_{j} \\
&-\frac{\lambda}{2 n} x_{i}^{2} x_{j}^{2} \\
&=\sum_{i<j} \underbrace{\sqrt{\frac{\lambda}{n}} Z_{i, j} x_{i} x_{j}}_{\text {SK }}+\underbrace{\frac{\lambda}{n} X_{i} X_{j} x_{i} x_{j}-\frac{\lambda}{2 n} x_{i}^{2} x_{j}^{2}}_{\text {planted solution }}
\end{aligned}
$$

Connection with statistical physics

A planted spin glass model

- Compute the MMSE for $\mathbf{Y}=\sqrt{\frac{\lambda}{n}} \mathbf{X X} \mathbf{X}^{\boldsymbol{\top}}+\mathbf{Z}$
- Study the posterior $\mathbb{P}(\mathbf{x} \mid \mathbf{Y})=\frac{1}{Z_{n}} P_{0}(\mathbf{x}) \exp \left(H_{n}(\mathbf{x})\right)$ where

$$
\begin{aligned}
& H_{n}(\mathbf{x})=\sum_{i<j} \sqrt{\frac{\lambda}{n}} Y_{i, j} x_{i} x_{j} \\
&-\frac{\lambda}{2 n} x_{i}^{2} x_{j}^{2} \\
&=\sum_{i<j} \underbrace{\sqrt{\frac{\lambda}{n}} Z_{i, j} x_{i} x_{j}}_{\text {SK }}+\underbrace{\frac{\lambda}{n} X_{i} X_{j} x_{i} x_{j}-\frac{\lambda}{2 n} x_{i}^{2} x_{j}^{2}}_{\text {planted solution }}
\end{aligned}
$$

- Compute the limit of the free energy $F_{n}=\frac{1}{n} \mathbb{E} \log Z_{n}$ because

$$
\text { Constant }-F_{n}=\frac{1}{n} I(\mathbf{X} ; \mathbf{Y}) \xrightarrow{\partial \lambda} \mathrm{MMSE}
$$

Replica symmetric formula

The scalar channel
Lesieur et al., 2015 conjectured that the problem is characterized par the scalar channel:

$$
Y_{0}=\sqrt{\gamma} X_{0}+Z_{0}
$$

and the scalar free energy: $\mathcal{F}(\gamma)=\mathbb{E}\left[\log \sum_{x_{0}} P_{0}\left(x_{0}\right) e^{\sqrt{\gamma} Y_{0} x_{0}-\frac{\gamma}{2} x_{0}^{2}}\right]$

Replica symmetric formula

The scalar channel
Lesieur et al., 2015 conjectured that the problem is characterized par the scalar channel:

$$
Y_{0}=\sqrt{\gamma} X_{0}+Z_{0}
$$

and the scalar free energy: $\mathcal{F}(\gamma)=\mathbb{E}\left[\log \sum_{x_{0}} P_{0}\left(x_{0}\right) e^{\sqrt{\gamma} Y_{0} x_{0}-\frac{\gamma}{2} x_{0}^{2}}\right]$
Replica symmetric formula

$$
\begin{array}{r}
F_{n} \xrightarrow[n \rightarrow \infty]{ } \sup _{q \geq 0} \mathcal{F}(\lambda q)-\frac{\lambda}{4} q^{2} \\
\mathrm{MMSE}_{n} \xrightarrow[n \rightarrow \infty]{ } \mathbb{E}_{P_{0}}\left[X^{2}\right]^{2}-q^{*}(\lambda)^{2}
\end{array}
$$

Proved by Barbier et al., 2016, extended by Lelarge and Miolane, 2016.

Some curves

- We will plot the MMSE and MSE ${ }^{\text {PCA }}$ curves when P_{0} is of the form

$$
\begin{cases}P_{0}(\sqrt{(1-p) / p}) & =p \\ P_{0}(-\sqrt{p /(1-p)}) & =1-p\end{cases}
$$

for some $p \in(0,1)$.

- One can show that the corresponding matrix estimation problem is, in some sense, equivalent to the community detection problem with 2 asymmetric communities.

MMSE, MSE ${ }^{\text {PCA }}$ and MSE ${ }^{\text {AMP }}$, asymmetric $\mathrm{SBM}: p=0.05$.

"Free energy lanscape", $p=0.05, \lambda=0.63$.

Phase diagram from Caltagirone et al., 2016

Thank you for your attention.

 Any questions?
References I

- Baik, Jinho, Gérard Ben Arous, and Sandrine Péché (2005). "Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices". In: Annals of Probability, pp. 1643-1697.
- Barbier, Jean et al. (2016). "Mutual information for symmetric rank-one matrix estimation: A proof of the replica formula". In: Advances in Neural Information Processing Systems, pp. 424-432.
- Benaych-Georges, Florent and Raj Rao Nadakuditi (2011). "The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices". In: Advances in Mathematics 227.1, pp. 494-521.
- Caltagirone, Francesco, Marc Lelarge, and Léo Miolane (2016). "Recovering asymmetric communities in the stochastic block model". In: arXiv preprint arXiv:1610.03680.
- Lelarge, Marc and Léo Miolane (2016). "Fundamental limits of symmetric low-rank matrix estimation". In: arXiv preprint arXiv:1611.03888.

References II

- Lesieur, Thibault, Florent Krzakala, and Lenka Zdeborová (2015). "MMSE of probabilistic low-rank matrix estimation: Universality with respect to the output channel". In: 53rd Annual Allerton Conference on Communication, Control, and Computing, Allerton 2015, Allerton Park \& Retreat Center, Monticello, IL, USA, September 29 - October 2, 2015. IEEE, pp. 680-687. ISBN: 978-1-5090-1824-6. DOI: 10.1109/ALLERTON.2015.7447070. URL: http://dx.doi.org/10.1109/ALLERTON. 2015.7447070.

