Identification and isotropy characterization of deformed random fields through excursion sets

Julie Fournier Les probabilités de demain - 11 May 2017

Work supervised by Anne Estrade MAP5, université Paris Descartes

The model of deformed random fields.

• Let $X : \mathbb{R}^2 \to \mathbb{R}$ be a stationary and isotropic random field: for any translation τ , for any rotation ρ in \mathbb{R}^2 ,

$$X \circ \tau \stackrel{\mathsf{law}}{=} X$$
 and $X \circ \rho \stackrel{\mathsf{law}}{=} X$.

We write C(t) = Cov(X(t), X(0)) its covariance function. We call X the **underlying field**.

• let $\theta : \mathbb{R}^2 \to \mathbb{R}^2$ be a bijective, bicontinuous, deterministic application satisfying $\theta(0) = 0$, which we will call a **deformation**.

 $X_{\theta} = X \circ \theta$: $\mathbb{R}^2 \to \mathbb{R}$ is the **deformed random field** constructed with the underlying field X and the deformation θ .

Two types of questions :

- Invariance properties of the deformed field
- Inverse problem: identification of θ thanks to (partial) observations of X_{θ} .

First observation: the invariance properties are not preserved in general.

Question

Which are the deformations that preserve stationarity and isotropy ?

- Spatial statistics (Sampson and Guttorp, 1992).
- Image analysis : "shape from texture" issue (Clerc-Mallat, 2002).
- Numerous domains of application in physics: for instance, used in cosmology for the modelization of the CMB and mass reconstruction in the universe.
- Also studied by Cabaña, 1987, Perrin-Meiring, 1999; Perrin-Senoussi, 2000, etc..

Cases of isotropy (in law) Our assumptions

The underlying field X must satisfy the following assumptions :

(H)
$$\begin{cases} X \text{ is stationary and isotropic,} \\ X \text{ is centered and admits a second moment.} \end{cases}$$

The **deformation** θ belongs to the set

 $\mathcal{D}^{0}(\mathbb{R}^{2}) = \{\theta : \mathbb{R}^{2} \to \mathbb{R}^{2} / \theta \text{ is continous and bijective,} \\ \text{with a continuous inverse,} \\ \text{such that } \theta(0) = 0\}$

Cases of isotropy

Problem

Which are the deformations θ such that for any underlying random field **X**, X_{θ} is isotropic ?

- **Example :** elements of SO(2) : rotations of \mathbb{R}^2 .
- **Another problem** : Which are the deformations θ such that for a fixed underlying random field X, X_{θ} is isotropic ?
- For the proof.
 - Invariance of the covariance function of X_{θ} under rotations :

$$orall
ho \in SO(2), orall (x,y) \in (\mathbb{R}^2)^2, \ \operatorname{Cov}(X_{ heta}(
ho(x)), X_{ heta}(
ho(y))) = \operatorname{Cov}(X_{ heta}(x), X_{ heta}(y)) \ C(heta(
ho(x)) - heta(
ho(y))) = C(heta(x) - heta(y))$$

• Chose the covariance function $C(x) = \exp(-\|x\|^2)$ to obtain

$$orall
ho\in SO(2), \ orall (x,y)\in (\mathbb{R}^2)^2, \quad \| heta(
ho(x))- heta(
ho(y))\|=\| heta(x)- heta(y)\|.$$

• Polar representation of θ .

Cases of isotropy

Answer to the problem

Spiral deformations are the deformations preserving isotropy for any underlying field *X*.

Notations : $\hat{\theta}$ polar representation of θ : $\hat{\theta} : (0, +\infty) \times \mathbb{Z}/2\pi\mathbb{Z} \to (0, +\infty) \times \mathbb{Z}/2\pi\mathbb{Z} \quad (r, \varphi) \mapsto (\hat{\theta}_1(r, \varphi), \hat{\theta}_2(r, \varphi)).$

Definition

A deformation $\theta \in \mathcal{D}^0(\mathbb{R}^2)$ is a spiral deformation if there exist $f: (0, +\infty) \to (0, +\infty)$ strictly increasing and surjective, $g: (0, +\infty) \to \mathbb{Z}/2\pi\mathbb{Z}$ and $\varepsilon \in \{\pm 1\}$ such that θ satisfies

 $orall (r, arphi) \in (0, +\infty) imes \mathbb{Z}/2\pi \mathbb{Z}, \quad \hat{ heta}(r, arphi) = (f(r), \, g(r) + arepsilon arphi).$

Simulations of fields deformed with spiral deformations

Level sets of a realization of X_{θ} , with a deformation $\theta : x \mapsto ||x|| x$ and X Gaussian with Gaussian covariance.

Level sets of a realization of X_{θ} , with θ a deformation with polar representation $\hat{\theta} : (r, \varphi) \mapsto (\sqrt{r}, r + \varphi)$ and X Gaussian with Gaussian covariance.

Excursion sets

- Let $u \in \mathbb{R}$ be a fixed level.
- It T be a rectangle or a segment in \mathbb{R}^2 .
- let $A_{\mu}(X_{\theta}, T)$ be the excursion set of X_{θ} restricted to T above level u:

 $A_{u}(X_{\theta}, T) = \{t \in T \mid X_{\theta}(t) \geq u\}$

Euler characteristic: integer-valued and additive functional defined on a large class of compact sets.

The Euler characteristic is a homotopy invariant, hence

$$A_{u}(X_{\theta},T) = \theta^{-1}(A_{u}(X,\theta(T)) \quad \Rightarrow \quad \chi(A_{u}(X_{\theta},T)) = \chi(A_{u}(X,\theta(T))).$$

and we can use an expectation formula proven for stationary and isotropic random fields in Adler-Taylor, 2007.

Additional assumptions

 $(H') \begin{cases} {\sf X} \text{ is Gaussian}, \\ {\sf X} \text{ is stationary and isotropic,} \\ {\sf X} \text{ is almost surely of class } {\cal C}^2, \\ {\sf X} \text{ is centered, } {\cal C}(0) = 1 \text{ and } {\cal C}''(0) = -l_2, \\ {\sf a \text{ non-degeneracy assumption on } {\sf X}(t), \text{ for every } t \in \mathbb{R}^2. \end{cases}$

The deformation θ belongs to the set

$$\mathcal{D}^{2}(\mathbb{R}^{2}) = \{\theta : \mathbb{R}^{2} \to \mathbb{R}^{2} / \theta \text{ of class } \mathcal{C}^{2} \text{ and bijective,}$$

with an inverse of class \mathcal{C}^{2} ,
such that $\theta(0) = 0\}$

Formulas for the expectation of $\mathbb{E}[\chi(A_u(X_{\theta}, T))]$

• If T is a segment in \mathbb{R}^2 , writing $|\theta(T)|_1$ the one-dimensional Hausdorff measure of $\theta(T)$,

$$\mathbb{E}[\chi(A_u(X_{\theta},T))] = e^{-u^2/2} \frac{|\theta(T)|_1}{2\pi} + \Psi(u)$$

where $\Psi(u) = \mathbb{P}(Y > u)$ for $Y \sim \mathcal{N}(0, 1)$.

• If $T \subset \mathbb{R}^2$ is a rectangle, writing $|\theta(T)|_2$ the two-dimensional Hausdorff measure of $\theta(T)$,

$$\mathbb{E}[\chi(A_u(X_\theta, T))] = e^{-u^2/2} \left(u \frac{|\theta(T)|_2}{(2\pi)^{3/2}} + \frac{|\partial\theta(T)|_1}{4\pi} \right) + \Psi(u)$$

where ∂G is the frontier of G.

Writing $\theta = (\theta_1, \theta_2)$ the coordinate functions of θ , let $J_{\theta}(s, t)$ be the **Jacobian** matrix of θ at point $(s, t) \in \mathbb{R}^2$:

$$J_{ heta}(s,t) = egin{pmatrix} rac{\partial heta_1}{\partial s}(s,t) & rac{\partial heta_1}{\partial t}(s,t) \ rac{\partial heta_2}{\partial s}(s,t) & rac{\partial heta_2}{\partial t}(s,t) \end{pmatrix} = ig(J^1_{ heta}(s,t) & J^2_{ heta}(s,t)ig)\,.$$

Note that the Jacobian determinant is either positive on \mathbb{R}^2 or negative on \mathbb{R}^2 .

•
$$|\theta([0,s] \times [0,t])|_2 = \int_0^s \int_0^t |\det(J_\theta(x,y))| \, dx \, dy$$

•
$$|\theta([0,s] \times \{t\})|_1 = \int_0^s \sqrt{\partial_x \theta_1(x,t)^2 + \partial_x \theta_2(x,t)^2} \, dx = \int_0^s ||J_{\theta}^1(x,t)|| \, dx$$

• $|\theta({s} \times [0,t])|_1 = \int_0^t \sqrt{\partial_y \theta_1(s,y)^2 + \partial_y \theta_2(s,y)^2} \, dy = \int_0^t ||J_\theta^2(s,y)|| \, dy.$

Consequence : general idea

Condition / information on $\mathbb{E}[\chi(A_u(X, \theta(T)))]$ (T rectangle or segment) implies condition / information on the Jacobian matrix of θ , hence on θ .

A weak notion of isotropy linked to excursion sets

Let X be an underlying field satisfying (H').

Definition (χ -isotropic deformation)

A deformation $\theta \in D^2(\mathbb{R}^2)$ is χ -isotropic if for any rectangle T in \mathbb{R}^2 , for any $u \in \mathbb{R}$ and for any $\rho \in SO(2)$,

 $\mathbb{E}[\chi(A_u(X_{\theta},\rho(T))] = \mathbb{E}[\chi(A_u(X_{\theta},T)]].$

- First observation : θ spiral deformation $\Rightarrow \theta \chi$ -isotropic deformation
- Therefore, if $\theta \chi$ -isotropic, X_{θ} can be considered as weakly isotropic.
- Definition depending on the underlying field X.

Aim : Prove that

 $\theta \ \chi$ -isotropic deformation $\Rightarrow \theta$ spiral deformation.

First characterization

- The χ -isotropic condition is also true for T segment.
- Formulas for E[χ(A_u(X_θ, T)] involve J_θ, formulas for E[χ(A_u(X_θ, ρ(T))] involve J_{θ∘ρ}.

Lemma 1

A deformation $\theta \in D^2(\mathbb{R}^2)$ is χ -isotropic if and only if for any $\rho \in SO(2)$, for any $x \in \mathbb{R}^2$,

$$\left\{egin{array}{ll} (i) & orall k\in\{1,2\}, \ \|J^k_{ heta\circ
ho}(x)\|=\|J^k_{ heta}(x)\|,\ (ii) & \det(J_{ heta\circ
ho}(x))=\det(J_{ heta}(x)). \end{array}
ight.$$

Second characterization and conclusion of the proof

A translation of the first lemma in polar coordinates brings:

Lemma 2

A deformation $\theta \in \mathcal{D}^2(\mathbb{R}^2)$ is a χ -isotropic deformation if and only if functions

$$\begin{cases} (r,\varphi) \mapsto (\partial_r \hat{\theta}_1(r,\varphi))^2 + (\hat{\theta}_1(r,\varphi) \, \partial_r \hat{\theta}_2(r,\varphi))^2 \\ (r,\varphi) \mapsto (\partial_\varphi \hat{\theta}_1(r,\varphi))^2 + (\hat{\theta}_1(r,\varphi) \, \partial_\varphi \hat{\theta}_2(r,\varphi))^2 \\ (r,\varphi) \mapsto \hat{\theta}_1(r,\varphi) \, \det(J_{\hat{\theta}}(r,\varphi)) \end{cases}$$

are radial, i.e. if they do not depend on φ .

This differential system is solved in Briant, Fournier (2017, submitted) and the set of solutions is exactly the set of spiral deformations.

Chain of equalities

We write

- S the set of spiral deformations in $\mathcal{D}^2(\mathbb{R}^2)$,
- *I* the set of deformations θ ∈ D²(ℝ²) such that for any underlying field X satisfying (H'), X_θ is isotropic,
- for a **fixed** underlying field X satisfying (**H**'),

 $\mathcal{I}(X) = \{ \theta \in \mathcal{D}^2(\mathbb{R}^2) \text{ such that } X_{\theta} \text{ is isotropic} \}.$

• \mathcal{X} the set of χ -isotropic deformations.

Corollary

Let X be a stationary and isotropic random field satisfying (H'). Then S = I = I(X) = X.

Conclusion : A weak notion of isotropy based on excursion sets coincides with isotropy in law.

Identification of the deformation

Different methods exist, but most of them require to know the deformed field on a whole window (see Guyon-Perrin (2000), Clerc-Mallat (2003), Anderes-Stein (2008), Anderes-Chatterjee (2009), Anderes-Guiness (2016), etc.).

Framework

We assume that **the deformation** θ **is unknown**.

We only have at our disposal sparse data: the observations of one excursion set of X_{θ} restricted to a certain window above a fixed level $u \neq 0$.

(Additional assumptions on θ)

Claim

Let us assume that, for one level $u \neq 0$, we know $\mathbb{E}[\chi(A_u(X_\theta, T))]$ for every rectangle or segment T in a fixed window W.

Then at each point $x \in W$, we may compute $||J^1_{\theta}(x)||$, $||J^1_{\theta}(x)||$ and $\det(J_{\theta}(x))$. Consequently, the complex dilatation at point x is determined, up to complex conjugation.

Thanks for your attention !

ADLER, R.J., TAYLOR, J.E. (2007). Random Fields and Geometry, Springer, New York.

ANDERES, E. B., STEIN, M. L. (2008). Estimating deformations of isotropic Gaussian random fields on the plane.

- ${\rm CABA \tilde{N}A},~{\rm E.M.}$ (1987). A test of isotropy based on level sets.
- FOURNIER, J. (2017). Identification and isotropy characterization of deformed random fields through excursion sets.

 $\rm GUYON,\,X.,\,PERRIN,\,O.$ (2000). Identification of space deformation using linear and superficial quadratic variations.

SAMPSON, P. D., GUTTORP, P. (1992). Nonparametric Estimation of Nonstationary Spatial Covariance Structure.