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Atomic Markov chains

Let X = (Xn)n∈N be a homogeneous Markov chain on a countably generated state
space (E , E) with transition probability Π and initial probability ν.

Chain X is assumed to be ψ -irreducible and aperiodic.

Regenerative Markov chain

We say that the chain X is regenerative, when there exists a measurable set A such
that µ(A) > 0 and Π(x , .) = Π(y , .) for all (x , y) ∈ A2
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Atomic Markov chains

Define the sequence of regeneration times (τA(j))j≥1.

Let

τA = τA(1) = inf{n ≥ 1 : Xn ∈ A}

be the first time when the chain hits the regeneration set A and

τA(j) = inf{n > τA(j − 1),Xn ∈ A} for j ≥ 2.

The segments of data are of the form:

Bj = (X1+τA(j), · · · ,XτA(j+1)), j ≥ 1

and take values in the torus ∪∞k=1E
k .

By the strong Markov property blocks corresponding to the consecutive visitis
of the chain to atom A are i.i.d.
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Harris recurrent Markov chains

Harris recurrence

Assume that X is a ψ-irreducible Markov chain. We say that X is Harris recurrent iff,
starting from any point x ∈ E and any set such that ψ(A) > 0, we have

Px(τA < +∞) = 1.

We construct an artificial regeneration set via Nummelin technique.

Small set

We say that a set S ∈ E is small if there exists a parameter δ > 0, a positive
probability measure Φ supported by S and an integer m ∈ N∗ such that

∀x ∈ S , A ∈ E Πm(x ,A) ≥ δ Φ(A), (1)

where Πm denotes the m-th iterate of the transition probability Π.
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Nummelin’s splitting technique

Let (Yn)n∈N be a sequence of independent r.v.’s with parameter δ.

We construct the bivriate chain XM = (Xn,Yn)n∈N with a joint distribution Pν,M.

The construction relies on the mixture representation of Π on S , namely
Π(x ,A) = δΦ(A) + (1− δ) Π(x ,A)−δΦ(A)

1−δ . It can be retrieved by the following
randomization of the transition probability Π each time the chain X visits the set
S . If Xn ∈ S and

if Yn = 1 (which happens with probability δ ∈ ]0, 1[), then Xn+1 is distributed
according to the probability measure Φ,
if Yn = 0 (that happens with probability 1− δ), then Xn+1 is distributed according
to the probability measure (1− δ)−1(Π(Xn, ·)− δΦ(·)).

Ŝ = S × {1} is an atom for the split chain.
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Nummelin’s splitting technique

Figure: Regeneration block construction for AR(1) model.
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We introduce the following notation for partial sums of the regeneration cycles

f (Bi ) =
∑τA(j+1)

i=1+τA(j) f (Xi ). In the following, we assume that the mean inter-renewal

time α = EA[τA] <∞ and write ln =
∑n

i=1 I{Xi ∈ A} for the total number
of consecutive visits of the chain to the atom A. The regenerative approach is based on
the following decomposition of the sum

∑n
i=1 f (Xi ) :

n∑
i=1

f (Xi ) =

b n
αc∑

i=1

f (Bi ) + ∆n,

where

∆n =
1

n

τA∑
i=1

f (Xi ) +
1

n

ln2∑
i=ln1

f (Bi ) +
1

n

n∑
i=τA(ln−1)

f (Xi ),

where ln1 = min
(⌊

n
α

⌋
− 1, ln − 1

)
, ln2 = max

(⌊
n
α

⌋
− 1, ln − 1

)
and

σ2(f ) =
1

EA(τA)
EA

(
τA∑
i=1

{f (Xi )− µ(f )}2

)
is the asymptotic variance.
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In empirical processes theory for processes indexed by class of functions, it is important
to assess the complexity of considered classes. The information about entropy of F
helps us to inspect how large our class is.

Covering and uniform entropy number

The covering number Np(ε,Q,F) is the minimal number of balls
{g : ‖g − f ‖Lp(Q) < ε} of radius ε needed to cover the set F . The centers of the balls
need not to belong to F , but they should have finite norms. The entropy (without
bracketing) is the logarithm of the covering number. We define uniform entropy
number as Np(ε,F) = supQ Np(ε,Q,F), where the supremum is taken over all discrete
probability measures Q.
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We impose the following conditions on the chain:

A1. (Bernstein’s block moment condition) There exists a positive constant M such
that for any p ≥ 2 and for every f ∈ F

EA |f (B1)|p ≤ 1

2
p!σ2(f )Mp−2. (2)

A2. (Block length moment assumption) There exists a positive constant N such that
for any p ≥ 2

EA |τA|p ≤ Np. (3)

A3. (Non-regenerative block exponential moment assumption) There exists λ0 > 0
such that for every f ∈ F we have Eν

[
exp

[
λ0

∣∣∑τA
i=1 f (Xi )

∣∣]] <∞.
A4. (Exponential block moment assumption) There exists λ1 > 0 such that for every

f ∈ F we have EA [exp [λ1 |f (B1)|]] <∞.
A5. (uniform entropy number condition) N2(ε,F) <∞.
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Bernstein type maximal inequality for regenerative Markov chains

Assume that X = (Xn)n∈N is a regenerative positive recurrent Markov chain. Then,
under assumptions A1-A5 and for ε < x , we have for some positive explicit constants
L, R, > 0 and any q1, q2 > 1, and n large enough

Pν

[
sup
f ∈F

1

n

∣∣∣∣∣
n∑

i=1

f (Xi )− µ(f )

∣∣∣∣∣ ≥ x

]
≤ N2 (ε,F)

2 exp

− (x − 2ε)2n

8
(
σ2
m
α + M(x−2ε)

n

)


+ C1 exp

[
−(x − 2ε)n

6

]
+ C2 exp

[
−(x − 2ε)n

6

]
+ exp

[
1

q1(2q1 − 2)
− (x − 2ε)n1/2

6Lq1

]
+ exp

[
1

q2(2q2 − 2)
− (x − 2ε)n1/2

6Rq2

]}
,

(4)

where C1,C2, L, R can be explicitly computed. F is an envelope function for F .
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Remark

Notice that our bound is a deviation bound in that it holds only for n large enough.
This is due to the control of the covering functions (under Pn) by a control under P.
However, by making additional assumptions on the regularity of the class of functions
and by choosing the adequate norm, it is possible to obtain by the same arguments
an exponential inequality valid for any n. Indeed, if F belongs to a ball of a Hölder
space CP(E ′) on a compact set E ′ of an Euclidean space endowed with the norm

||f ||CP(E ′) = sup
x∈E ′
|f (x)|+ sup

x1∈E ′,x2∈E ′

(
f (x1)− f (x2)

d(x1, x2)p

)
,

then one can obtain concentration maximal inequality.
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Sketch of the proof

For the simplicity’s sake we introduce one piece of notation f̄ (x) = f (x)− µ(f ). Notice
that as n→∞ we have with Pν-probability one that ln ∼

⌊
n
α

⌋
. Thus, we consider the

sum of random variables of the following form

Zn(f̄ ) =
1

n

b n
αc∑

i=1

f̄ (Bj). (5)

Furthermore, we have that Sn(f̄ ) = Zn(f̄ ) + ∆n(f̄ ).
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Note that

PA

1

n

∣∣∣∣∣∣∣
b n

αc∑
i=1

f̄ (Bi )

∣∣∣∣∣∣∣ ≥ x

 ≤ 2 exp

− x2n

8
(
σ2(f )
α + Mx

n

)
 (6)

since f̄ (Bi ), i = 1, · · · ,
⌊
n
α

⌋
are independent and identically distributed sub-exponential

random variables.
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Control the remainder term ∆n is challenging. We want to bound the tail probabilities:

Pν


∣∣∣∣∣∣1n

τA∑
i=1

f̄ (Xi ) +
1

n

ln2∑
i=ln1

f̄ (Bi ) +
1

n

n∑
i=τA(ln−1)

f̄ (Xi )

∣∣∣∣∣∣ ≥ x


≤ Pν

{∣∣∣∣∣1n
τA∑
i=1

f̄ (Xi )

∣∣∣∣∣ ≥ x

6

}
+ Pν


∣∣∣∣∣∣1n

ln2∑
i=ln1

f̄ (Bi )

∣∣∣∣∣∣ ≥ x

6


+ Pν


∣∣∣∣∣∣1n

n∑
i=τA(ln−1)

f̄ (Xi )

∣∣∣∣∣∣ ≥ x

6

 . (7)
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First and the last terms on the right hand side of (7) can be easily controlled by the
Markov’s inequality. In order to control the middle term, firstly note that

Pν
{∣∣∣ 1

n

∑ln2
i=ln1

f̄ (Bi )
∣∣∣ ≥ x

6

}
can be written as

Pν


∣∣∣∣∣∣1n

ln2∑
i=ln1

f̄ (Bi )

∣∣∣∣∣∣ ≥ x

6

 = Pν


∣∣∣∣∣∣∣
1

n

b n
αc−1∑

i=ln−1

f̄ (Bi )I{ln<b n
αc}

∣∣∣∣∣∣∣ ≥
x

6


+ Pν


∣∣∣∣∣∣∣
1

n

ln−1∑
i=b n

αc−1

f̄ (Bi )I{ln>b n
αc}

∣∣∣∣∣∣∣ ≥
x

6
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The control of the middle term comes down to control of the moment generating
functions of the processes (technical, see the proof of Cio lek and Bertail (2017) for
details)

1

n

b n
αc−1∑

i=ln−1

f̄ (Bi )I{ln<b n
αc}

and

1

n

ln−1∑
i=b n

αc−1

f̄ (Bi )I{ln<b n
αc}
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We obtain the maximal inequality by applying similar arguments like in Pollard (1984)
and Kosorok (2008). We obtain that

Pν

[
sup
f ∈F

∣∣∣∣∣1n
n∑

i=1

(f (Xi )− µ(f ))

∣∣∣∣∣ ≥ x

]

≤ N2 (ε,F) max
j∈N2(ε,F)

Pν

{
1

n

n∑
i=1

|hj(Xi )− µ(hj)| ≥ x − 2ε

}

where h1, h2, · · · , hW are functions such that W = N2(ε,F).
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We can obtain even sharper upper bound when class F is uniformly bounded. In the
following, we will show that it is possible to get a Hoeffding’s type inequality and have
a stronger control of moments of the sum Sn(f ) which is a natural consequence of
uniform boundedness assumption imposed on F .

A6. Class of functions F is uniformly bounded.
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Hoeffding type maximal inequality for regenerative Markov chains

Assume that X = (Xn)n∈N is a regenerative positive recurrent Markov chain. Then,
under assumptions A1-A6 and for ε < x , we have for some positive explicit constants
L, R, D > 0 and any q1, q2 > 1

Pν

[
sup
f ∈F

1

n

∣∣∣∣∣
n∑

i=1

f (Xi )− µ(f )

σ(f )

∣∣∣∣∣ ≥ x

]
≤ N2 (ε,F)

2 exp

−(x − 2ε)2n2

8
⌊
σ2
m
α

⌋
D2


+ C1 exp

[
−(x − 2ε)n

6

]
+ C2 exp

[
−(x − 2ε)n

6

]
+ exp

[
1

q1(2q1 − 2)
− (x − 2ε)n1/2

6Lq1

]
+ exp

[
1

q2(2q2 − 2)
− (x − 2ε)n1/2

6Rq2

]}
,

where C1 and C2 are constants that can be explicitly computed. F is an envelope
function for F .
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It is noteworthy that presented theorems are also valid in Harris recurrent case under
slightly modified assumptions. It is well known that it is possible to retrieve all
regeneration techniques also in Harris case via the Nummelin splitting technique which
allows to extend the probabilistic structure of any chain in order to artificially construct
a regeneration set.
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We will formulate Bernstein type maximal inequality for unbounded classes of
functions in Harris recurrent case. We impose the following conditions:

AH1. (Bernstein’s block moment condition) There exists a positive constant M such
that for any p ≥ 2 and for every f ∈ F

sup
y∈S

Ey |f (B1)|p ≤ 1

2
p!σ2(f )Mp−2. (8)

AH2. (Block length moment assumption) There exists a positive constant N such that
for any p ≥ 2

sup
y∈S

Ey |τS |p ≤ Np. (9)

AH3. (Non-regenerative block exponential moment assumption) There exists a constant
λ0 > 0 such that for every f ∈ F we have Eν

[
exp

∣∣∑τS
i=1 f (Xi )

∣∣] <∞.
AH4. (Exponential block moment assumption) There exists a constant λ1 > 0 such that

for every f ∈ F we have supy∈S Ey [exp |f (B1)|] <∞.
Let supy∈S Ey |τS | = αM <∞.
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Assume that XM is a Harris recurrent, strongly aperiodic Markov chain. Suppose also
that N2(ε,F) <∞.Then, under assumptions AH1-AH4, we have for some positive
explicit constants L, R > 0 and any q1, q2 > 1

Pν

[
1

n

∣∣∣∣∣
n∑

i=1

f (Xi )− µ(f )

∣∣∣∣∣ ≥ x

]
≤ N2(ε,F)

2 exp

− (x − 2ε)2n

8
(
σ2(f )
αM

+ M(x−2ε)
n

)


+ C1 exp

[
−(x − 2ε)n

6

]
+ C2 exp

[
−(x − 2ε)n

6

]
+ exp

{
1

q1(2q1 − 2)
− (x − 2ε)n1/2

6Lq1

}
+ exp

{
1

q2(2q2 − 2)
− (x − 2ε)n1/2

6Rq2

}}
,

where C1, C2 and L, R are constants that can be explicitly computed.
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